Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Fish Biol Fish ; 32(1): 65-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280238

RESUMEN

Marine ecosystems and their associated biodiversity sustain life on Earth and hold intrinsic value. Critical marine ecosystem services include maintenance of global oxygen and carbon cycles, production of food and energy, and sustenance of human wellbeing. However marine ecosystems are swiftly being degraded due to the unsustainable use of marine environments and a rapidly changing climate. The fundamental challenge for the future is therefore to safeguard marine ecosystem biodiversity, function, and adaptive capacity whilst continuing to provide vital resources for the global population. Here, we use foresighting/hindcasting to consider two plausible futures towards 2030: a business-as-usual trajectory (i.e. continuation of current trends), and a more sustainable but technically achievable future in line with the UN Sustainable Development Goals. We identify key drivers that differentiate these alternative futures and use these to develop an action pathway towards the desirable, more sustainable future. Key to achieving the more sustainable future will be establishing integrative (i.e. across jurisdictions and sectors), adaptive management that supports equitable and sustainable stewardship of marine environments. Conserving marine ecosystems will require recalibrating our social, financial, and industrial relationships with the marine environment. While a sustainable future requires long-term planning and commitment beyond 2030, immediate action is needed to avoid tipping points and avert trajectories of ecosystem decline. By acting now to optimise management and protection of marine ecosystems, building upon existing technologies, and conserving the remaining biodiversity, we can create the best opportunity for a sustainable future in 2030 and beyond.

2.
Rev Fish Biol Fish ; 32(1): 231-251, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33814734

RESUMEN

One of the most pronounced effects of climate change on the world's oceans is the (generally) poleward movement of species and fishery stocks in response to increasing water temperatures. In some regions, such redistributions are already causing dramatic shifts in marine socioecological systems, profoundly altering ecosystem structure and function, challenging domestic and international fisheries, and impacting on human communities. Such effects are expected to become increasingly widespread as waters continue to warm and species ranges continue to shift. Actions taken over the coming decade (2021-2030) can help us adapt to species redistributions and minimise negative impacts on ecosystems and human communities, achieving a more sustainable future in the face of ecosystem change. We describe key drivers related to climate-driven species redistributions that are likely to have a high impact and influence on whether a sustainable future is achievable by 2030. We posit two different futures-a 'business as usual' future and a technically achievable and more sustainable future, aligned with the Sustainable Development Goals. We then identify concrete actions that provide a pathway towards the more sustainable 2030 and that acknowledge and include Indigenous perspectives. Achieving this sustainable future will depend on improved monitoring and detection, and on adaptive, cooperative management to proactively respond to the challenge of species redistribution. We synthesise examples of such actions as the basis of a strategic approach to tackle this global-scale challenge for the benefit of humanity and ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09641-3.

3.
Rev Fish Biol Fish ; 32(1): 253-270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33456210

RESUMEN

Ocean governance is complex and influenced by multiple drivers and actors with different worldviews and goals. While governance encompasses many elements, in this paper we focus on the processes that operate within and between states, civil society and local communities, and the market, including industry. Specifically, in this paper, we address the question of how to move towards more sustainable ocean governance aligning with the sustainable development goals (SDGs) and the UN Ocean Decade. We address three major risks to oceans that arise from governance-related issues: (1) the impacts of the overexploitation of marine resources; (2) inequitable distribution of access to and benefits from marine ecosystem services, and (3) inadequate or inappropriate adaptation to changing ocean conditions. The SDGs have been used as an underlying framework to develop these risks. We identify five drivers that may determine how ocean governance evolves, namely formal rules and institutions, evidence and knowledge-based decision-making, legitimacy of decision-making institutions, stakeholder engagement and participation, and empowering communities. These drivers were used to define two alternative futures by 2030: (a) 'Business as Usual'-a continuation of current trajectories and (b) 'More Sustainable Future'-optimistic, transformational, but technically achievable. We then identify what actions, as structured processes, can reduce the three major governance-related risks and lead to the More Sustainable Future. These actions relate to the process of co-creation and implementation of improved, comprehensive, and integrated management plans, enhancement of decision-making processes, and better anticipation and consideration of ambiguity and uncertainty. Supplementary information: The online version of this article (10.1007/s11160-020-09631-x) contains supplementary material, which is available to authorized users.

4.
Rev Fish Biol Fish ; 32(1): 39-63, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34566277

RESUMEN

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.

5.
Biol Rev Camb Philos Soc ; 93(1): 284-305, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28568902

RESUMEN

Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecología/métodos , Ciencias Sociales/métodos , Animales , Humanos , Especificidad de la Especie
6.
Science ; 355(6332)2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28360268

RESUMEN

Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals.


Asunto(s)
Biodiversidad , Cambio Climático , Animales , Abastecimiento de Alimentos , Salud , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...